<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>September</td>
<td>The Building Blocks of Algebra</td>
<td>- Rates, Patterns and Problem Solving
- Variables and Expressions
- The Commutative and Associative Properties
- The Distributive Property
- Equivalent Expressions
- Seeing Structure in Expressions
- Exponents as Repeated Multiplication
- More Complex Equivalency
- More Structure Work
- Translating English to Algebra
- Algebraic Puzzles</td>
<td>N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
A-REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Tasks are limited to quadratic equations.
A-SSE.2 Use the structure of an expression to identify ways to rewrite it. Tasks are limited to numerical expressions and polynomial expressions in one variable.
A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Tasks are limited to linear, quadratic, or exponential equations with integer exponents.</td>
<td>Collaborative and Individual Challenges Labs
Articulate mathematical processes
Highlight: Graphing calculator scavenger hunt lab</td>
</tr>
<tr>
<td>Month</td>
<td>Unit / Theme</td>
<td>Content</td>
<td>CC Standards / Skills</td>
<td>Assessment</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| October | Linear Expressions, Equations, and Inequalities | ● Equations and Their Solutions
● Seeing Structure to Solve Equations
● A Linear Equation Solving Review
● Justifying Steps in Solving an Equation
● Linear Word Problems
● More Linear Equations and Consecutive Integer Games
● Solving Linear Equations with Unspecified Constants
● Inequalities
● Solving Linear Inequalities
● Compound Inequalities
● More Work with Compound Inequalities
● Interval Notation
● Modeling with Inequalities
● Emphasis on graphing calculator skills and techniques | A-REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.
A-SSE.2 Use the structure of an expression to identify ways to rewrite it. Tasks are limited to numerical expressions and polynomial expressions in one variable.
A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
A-REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method. Tasks are limited to quadratic equations.
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Tasks are limited to linear, quadratic, or exponential equations with integer exponents.
A-CED.4 Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. | Collaborative and Individual Challenges
Labs
Articulate mathematical processes
Highlight: Linear regression lab |
MARLBORO CENTRAL SCHOOL DISTRICT – CURRICULUM MAP

Subject: Common Core Algebra 1 Fluency
Grade: High School

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| November to mid-December | Functions | • Introduction to Functions
• Function Notation
• Graphs of Function
• Graphical Features
• Exploring Functions Using the Graphing Calculator
• Average Rate of Change
• The Domain and Range of a Function

Emphasis on graphing calculator skills and techniques | F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
F-IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.
F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima. b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions can include: linear, quadratic, square root, cube root, piecewise-defined (including step and absolute value) and exponential functions. No logarithmic, higher order polynomial, or trigonometric functions.
F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. The same limitation on function types applies to this standard as that for F-IF.4.
N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. | Collaborative and Individual Challenges
Labs
Articulate mathematical processes
Highlight: Function Machine |
<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid December to End of December</td>
<td>Linear Functions and Arithmetic Sequences</td>
<td>• Proportional Relationships</td>
<td>A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.</td>
<td>Collaborative and Individual Challenges</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Unit Conversions</td>
<td>F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima.</td>
<td>Labs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Non-proportional Linear Relationships</td>
<td>N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.</td>
<td>Articulate mathematical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More Work Graphing Linear Functions (Lines)</td>
<td>F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. The same limitation on function types applies to this standard as that for F-IF.4.</td>
<td>Highlight: Slope lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Writing Equations in Slope-Intercept Form</td>
<td>F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modeling with Linear Functions</td>
<td>F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). Tasks are limited to constructing linear and exponential functions in simple context (not multi-step)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• More Linear Modeling</td>
<td>N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Strange Lines = Vertical and Horizontal</td>
<td>F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function n(t) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Absolute Value and Step Functions</td>
<td>F-BF.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. Tasks are limited to linear functions, quadratic functions, and exponential functions with domains in the integers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The Truth About Graphs</td>
<td>F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions. b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Graphs of Linear Inequalities</td>
<td>F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context. Exponential functions will be limited to those with domains in the integers.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Introduction to Sequences</td>
<td>A- SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Arithmetic Sequences</td>
<td>A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emphasis on graphing calculator skills and techniques</td>
<td>A- SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients. A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.</td>
<td></td>
</tr>
</tbody>
</table>
A-REI.12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.

F-IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>January to</td>
<td>Systems of Linear Equations and</td>
<td>• Solutions to Systems and Solving by Graphing</td>
<td>A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.</td>
<td>Collaborative and Individual Challenges Labs</td>
</tr>
<tr>
<td>Mid-January</td>
<td>Inequalities</td>
<td>• Solving Systems by Substitution</td>
<td>A-REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.</td>
<td>Articulate mathematical processes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Properties of Systems and Their Solutions</td>
<td>A-REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).</td>
<td>Highlight: Systems of equation scavenger hunt / treasure hunt lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• The Elimination Method</td>
<td>A-REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modeling with Systems of Equations</td>
<td>A-REI.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solving Equations Graphically</td>
<td>A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations (y = f(x)) and (y = g(x)) intersect are the solutions of the equation (f(x) = g(x)); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where (f(x)) and/or (g(x)) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Algebra I will include all function types except exponential and logarithmic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Solving Systems of Inequalities</td>
<td>A-REI.12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modeling with Systems of Inequalities</td>
<td>A-REI.11 Explain why the x-coordinates of the points where the graphs of the equations (y = f(x)) and (y = g(x)) intersect are the solutions of the equation (f(x) = g(x)); find the solutions approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where (f(x)) and/or (g(x)) are linear, polynomial, rational, absolute value, exponential, and logarithmic functions. Algebra I will include all function types except exponential and logarithmic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emphasis on graphing calculator skills and techniques</td>
<td>A-REI.12 Graph the solutions to a linear inequality in two variables as a half plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes.</td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>Unit / Theme</td>
<td>Content</td>
<td>CC Standards / Skills</td>
<td>Assessment</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Mid-January to February| Exponents, Exponents, and more Exponents | ● Simplifying Expressions Involving Exponents
● Zero and Negative Exponents
● Exponential Growth
● Introduction to Exponential Functions
● Percent Review
● Percent increase and Decrease
● Exponential Models Based on Percent Growth
● Linear Versus Exponential
● Geometric Sequences
● **Emphasis on graphing calculator skills and techniques** | A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.
c. Use the properties of exponents to transform expressions for exponential functions. Tasks are limited to exponential expressions with integer coefficients.
A-CED.2 Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
F-BF.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process, or steps for calculation from a context. Tasks are limited to linear functions, quadratic functions, and exponential functions with domains in the integers.
F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F-LE.2 Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). Tasks are limited to constructing linear and exponential functions in simple context (not multi-step).
F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. The same limitation on function types applies to this standard as that for F-IF.4.
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Tasks are limited to linear, quadratic, or exponential equations with integer exponents.
F-LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.
F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context. Exponential functions will be limited to those with domains in the integers.
N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.
A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another. | Collaborative and Individual Challenges Labs
Articulate mathematical processes
Highlight: % Growth and Decay lab |
A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
F-IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers.

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| February | Polynomials | ● Introduction to Polynomials
● Multiplying Polynomials
● Factoring Polynomials
● Factor Based Conjugate Pairs
● Factoring Trinomials
● More Work Factoring Trinomials

Emphasis on graphing calculator skills and techniques
| | | | A-APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
A-SSE.1 Interpret expressions that represent a quantity in terms of its context.
a. Interpret parts of an expression, such as terms, factors, and coefficients.
b. Interpret complicated expressions by viewing one or more of their parts as a single entity.
A-SSE.2 Use the structure of an expression to identify ways to rewrite it. Tasks are limited to numerical expressions and polynomial expressions in one variable. | Collaborative and Individual Challenges
Labs
Articulate mathematical processes
Highlight: *Factoring Boot Camp* |
<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| March | Quadratic Functions and Their Algebra | ● Introduction to Quadratic Functions
● More Work with Parabolas
● The Shifted Form of a Parabola
● Completing the Square
● Stretching Parabolas and More Completing the Square
● The Zeros of a Quadratic
● More Zero Product Law Work
● Quadratic Word Problems | A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
F-IF.4 For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. Functions can include: linear, quadratic, square root, cube root, piecewise-defined (including step and absolute value) and exponential functions. No logarithmic, higher order polynomial, or trigonometric functions.
F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Identifying these transformations will be limited to linear and quadratic functions. Students should experiment, though, with functions listed in F-IF.4.
A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. c. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.
F-IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic function to show zeroes, extreme values, and symmetry of the graph, and interpret these in terms of a context.
F-IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum. Limitations on function types are the same as those laid out in F-IF.4.
A-SSE.1 Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
A-APR.3 Identify zeros of polynomials when suitable factorizations are available, and use the zeros to construct a rough graph of the function defined by the polynomial. Tasks are limited to quadratic and cubic polynomials in which linear and quadratic factors are available.
A-REI.4 Solve quadratic equations in one variable. b. Solve quadratic equations by inspection (e.g., for 2 x = 49), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial | Collaborative and Individual Challenges
Labs
Articulate mathematical processes
Highlight: Bottle Flip STEM challenge, culminating with 3D printer generated ultimate bottle |
A-CED.1 Create equations and inequalities in one variable and use them to solve problems. Include equations arising from linear and quadratic functions, and simple rational and exponential functions. Tasks are limited to linear, quadratic, or exponential equations with integer exponents.

A-SSE.1 Interpret expressions that represent a quantity in terms of its context.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

A-REI.4 Solve quadratic equations in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form.

b. Solve quadratic equations by inspection (e.g., for $2x^2 - 3x + 1 = 0$, taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation). Tasks do not require students to solve quadratics for non-zero imaginary solutions, but students should recognize cases in which no real solutions exist.

A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

N-RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then $f(x)$ denotes the output of f corresponding to the input x. The graph of f is the graph of the equation $y = f(x)$.

F-BF.3 Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k f(x)$, $f(kx)$, and $f(x + k)$ for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Identifying these transformations will be limited to linear and quadratic functions. Students should experiment, though, with functions listed in F-IF.4.

A-SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

July

Roots and Irrational Numbers

- Square Roots
- Irrational Numbers
- Square Root Functions and Shifting
- Solving Quadratics Using Inverse Operations
- Finding Zeroes by Completing the Square
- The Quadratic Formula
- Final Work with Quadratic Equations
- Cube Roots

Emphasis on graphing calculator skills and techniques

Collaborative and Individual Challenges

Labs

Articulate mathematical processes

Highlight: Bottle Flip STEM challenge, culminating with 3D printer generated ultimate bottle
MARLBORO CENTRAL SCHOOL DISTRICT – CURRICULUM MAP

Subject: Common Core Algebra 1 Fluency
Grade: High School

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| May | Statistics | - Graphical Displays of Data
- Quartiles and Box Plots
- Measures of Central Tendency
- Variation within a Data Set
- Two Way Frequency Tables
- Bivariate Data Analysis
- Linear Regression on the Calculator
- Other Types of Regression
- Quantifying Predictability
- Residuals
- **Emphasis on graphing calculator skills and techniques**
- N-Q.1 Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays.
- S-ID.1 Represent data with plots on the real number line (dot plots, histograms, and box plots).
- S-ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
- S-ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
- S-ID.4 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).
- S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
- S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. Exponential functions are limited to those with domains in the integers.
- c. Fit a linear function for a scatter plot that suggests a linear association.
- S-ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S-ID.8 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S-ID.9 Distinguish between correlation and causation.
- N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.
- S-ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.
- S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. Exponential functions are limited to those with domains in the integers.
- c. Fit a linear function for a scatter plot that suggests a linear association.
- S-ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S-ID.8 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S-ID.9 Distinguish between correlation and causation. | Collaborative and Individual Challenges
Labs
Articulate mathematical processes
Highlight: *Fidget Spinner STEM project* |
S-ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.
S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related
b. Informally assess the fit of a function by plotting and analyzing residuals.

<table>
<thead>
<tr>
<th>Month</th>
<th>Unit / Theme</th>
<th>Content</th>
<th>CC Standards / Skills</th>
<th>Assessment</th>
</tr>
</thead>
</table>
| June | Final Look at Functions and Modeling | ● Function Transformations
● Horizontal Stretching of Functions
● Discrete Functions
● Another Look at Linear and Exponential Models
● Step Functions Revisited
● Piecewise Linear Functions
● Quadratic Models
● Limits on the Accuracy of Our Models
● Emphasis on graphing calculator skills and techniques | F-IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
F-BF.3 Identify the effect on the graph of replacing f(x) by f(x) + k, k f(x), f(kx), and f(x + k) for specific values of k (both positive and negative); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Identifying these transformations will be limited to linear and quadratic functions. Students should experiment, though, with functions listed in F-IF.4.
A-CED.3 Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.
F-IF.5 Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function.
F-LE.1 Distinguish between situations that can be modeled with linear functions and with exponential functions.
a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another
c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.
F-LE.5 Interpret the parameters in a linear or exponential function in terms of a context. Exponential functions will be limited to those with domains in the integers.
S-ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models. Exponential functions are limited to those with domains in the integers.
b. Informally assess the fit of a function by plotting and analyzing residuals
c. Fit a linear function for a scatter plot that suggests a linear association.
F-IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.
Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions. | Collaborative and Individual Challenges
Labs
Articulate mathematical processes |
| | | F-IF.6 Calculate and interpret the average rate of change of a function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph. The same limitation on function types applies to this standard as that for F-IF.4.
N-Q.2 Define appropriate quantities for the purpose of descriptive modeling.
N-Q.3 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. | |
|---|---|---|---|

Reviewed
Fall 2020